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Arguments are presented which permit the determination at the “physical” 
level of rigor of the asymptotic nature of problem solutions for bodies with 
a periodic microstructure. A simple method is given of constructing the av- 
eraged equations. The exposition is carried out on two examples : theprob- 
lem of the deformation of an elastic body with periodically distributed cav - 
ities and the problem of the flow of a viscous liquid past periodically dis - 
tributed particles. In various areas of the mechanics of continuous media 
the problem arises of the averaged description of bodies consisting of a large 
number of periodically recurring elements (cells). The case when the state 
of the cell is given by a finite collection of parameters (for example, an 
atomic lattice in the harmonic approximation or a rod system} was studied 

in [ll. The case when the cell’s state is described by a collection of field 

f’unctions which satisfy a system of partial differential equations was invest- 
igated in [Z - 12 1. The averaging of one second-order linear elliptic equa- 
tion was considered in [Z]* The asymptotics and the averaged equations for 
a wide class of Linear equation systems were constructed in [3, 4 ] indepen - 
dently of [Z]. Averaged equations in variational problems were derived in 
[5 1. The results obtained in [3, 4 J were extended to nonlinear equations in 
[5 , 61. Further mathematical proof and generalizations to variational in - 
equalities are contained in [7 -111. The results in [S] were recently obtained 
independently in [X2 1, The averaged equations in [Z-12] were obtained 
under the following restrictions : if there is a cavity in the cell, tl~enNeuman~* 
type conditions are imposed on its boundary. The corresponding class of 
problems contains, in particular, the problems on the efficiency coefficients 
of heat-and electro-conductivity of periodically micro-inhomogeneous bod- 
ies, on the potential flow of an ideal incompressible liquid past periodically 
srtuated obstacles, on the determination of the stressed state of an elastic 
body with periodically situated cracks, etc. However, it does not include, 
for instance, the problem on the flow of a viscous liquid through the periodic 
lattice of bodies. This is connected with the fact that the transition from 
Neumann-type conditions to Dirichlet-type conditions essentially alters the 
asymptotic behavior of the solution. It is shown below that the original lin- 
ear problem can be rewritten in other terms such that the question on the 
construction of the solution’s asymptotics and of the averaged equations is 
simple to resolve both for a Neumann-type boundary condition as well as 
for a Dirichlet-type boundary condition. The idea of a quasicontinuum Cl] 
is used in the reformulation. The averaged equations obtained in theviscous 
liquid problem, as assumed earlier in [13 -161, contain an asymmetric ten- 
sor of viscous stresses, Certain generalizations are discussed. 
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l.Stotement of the problem, In a three-dimensional space R wecon- 
sider a periodic lattice, cubic for simplicity, with a step b. In each cell we locate 
a certain region A such that this region recurs periodically in the space. By B, we 

denote the cell numbered n n is an integer-valued vector with components n’) 
and by A, we denote the regi:n . A in cell B,. We introduce a certain bounded 
region V with diameter I, 1 > b. In the region V - ZA, (the A, wholly 

belonging to V occur in the sum) we consider the system of equations 

- ~p~~~i -f- pAwf = 0 (1.1) 

13wif~xi = 0 (1.2) 

On the boundary dV of region V we prescribe the functions wi (s) 

Wi = hi (3) on 8V (1.3) 

On the boundaries aA,, of regions A, we consider two types of boundary conditions 

(-_~hir -#- 211&i&) vk = 0 on dA, (Problem 1) (1.4) 

Eik = w(i,Fr) EZ ‘1s CWi,Jc -t wk,i) 

Wi = Ui (Tt) + eijkd (n) (3’ - bnk) on aAn (Problem 2) (1.5) 

Here Yk are the components of the unit normal vector, ui(n) and oi (n) are 
vectors specified in each cell, ai j and ei jk are the Kronecker and Levi- Civita 

symbols, differentiation with respect to the Cartesian coordinates xi is denoted by a 

comma in the indices, the symmetrIzation operation is denoted by parentheses. 
Problem 1 is the problem on the deformation of an incompressible isotropic ela- 

stic body containing a large number of traction-free periodically situated cavities A, ; 
U’i are the components of the displacement vector, p is the pressure, p is the shear 

modulus. Problem 2 is the problem on the flow of a viscous incompressible liquid (in 

the Stokes approximation ) past a large number of periodically situated particles A, 
having a translational velocity ui (n) and an angular velocity wi(n); Wi are the com- 
ponents of the liquid’s velocity vector, p is the pressure, ~_c is the shear viscosity 

coefficient. In the cell, Problem 1 is in the nature of a Neumann problem and Problem 

2, of a Dirichlet problem. The assumtions on the incompressibility and isotropy of the 
elastic body, connected with Problem 1, are unessential and are adopted in order to 

treat within the framework of one set of equations the physically interesting problems 
of Dirichlet and Neumann types. 

Problems 1 and 2 can be given variational formulations. Problem 1 can be tre- 

ated as a problem on the minimum of the functional 

E = 2~ S EijEij d3Z (1.6) 
V--CA, 

under constraints (1.2) and (1.3 ) and Problem 2 as a problem on the minimum of func- 
tional (1.6 ) under constraints (1.2 1, (1.3 ) and (1.5 1. The pressure p coincides 

with the Lagrange multiplier for constraint (1.2 1. 
If b/l< 1, then region V contains a large number of cavities A, of order 

(b i Z)-3, and an averaged description becomes possible, We are required to construct 

the eorr~pondiRg averaged equations. The averaged equations are in some sense limit 
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equations as b / 1 ct 0. In the limit passage b / 1 -+ Cl we assume the region Tr to 
be fixed. This means that we are examining a sequence of periodic lattices with a de- 

creasing step b. The volume concentration c , the ratio of the volume of region 
A, to the volume of an elementary cell, remains finite in general, The behavior of 

the functions Ui (a), hi (~6) and ht (g) as b -+ 0 is described below. 

2. On the concept of averages. The solutions of Problems 1 and 2 
are rapidly-oscillating functions of the coordinates. Ususally we are interested in cer- 
tain average quantities changing little on distances of the order of b. We define the 

average characteristics in the following manner. A function f (z) continuous in the 
closed region V is called a macro~nc~on if it is independent of parameter b. The 
naturalness of such a definition is connected with the fact that for each function f (x) 

continuous in a closed region we can find b so small that everywhere in region V 
function f (z) varies little on distances of the order of b. 

Let function F (z, b) be specified in region V - ZA %. The domain of 
determination of F (2, b), as the function itself, depends upon b. If for b -+ 0 
function F (5, b) is representable in the form 

J’ (5, b) = f (8 + r- (2, b) (2.1) 

where function f (x) is defined and continuous in the closed region V and is inde- 
pendent of b, while r (E, b) cf 0 as b-+-O , then function f (2) is called the 

asymptotic average of function F (5, b). Analogously, if a function G (ni, b) of the 

integer arguments n4 is representable in the form 

G (d, 0) = g (bn!) + r (ni, b) 

where g (x’) is a macro~nction and r (nit b 
b 

-+ 0 as b -+ 0, then g (xi) is 
called the asymptotic average of function G (n , b). 

From function F (5, b) we can construct a function G (n, b) of a discrete 

argument by the rule (Z is the volume of region B, - A,) 

G (n, b) = f s F (x, b) d3x (2.2) 
B,--A n 

If the function G (n, b) of (2.2) has the asymptotic average g (x), then g (z) is 
called the volume-average of F (z, b). If function F (z, b) has the asymptotic ave- 
rage f (2) , then it obviously has a volume-average and the asymptotic average coin- 
cides with the volume-average. The converse is not true: an asymptotic average may 
not exist for a function F (5, b) having a volume-average. For example, the func- 
tion sin2 (x/b) on the straight line f (x) does not have an asymptotic average, how- 

ever, a volume-average exists for it. From now on we shall omit the argument b for 
brevity when speaking of functions of the type of F (t, b) and G (n, b), since the 
dependency on b usually follows from the context, 

We shall assume that the functions ui (a) and Oi (nf in boundary condi- 

tions (1.5 ) have the asymptotic averages ui (x) and wi (x) and that hi (x) is a 

macrofunction. The subsequent presentation is based on the following two assumptions. 

Assumption 1. Functions CL’: (X), being solutions of Problems 1 and 2, 
have the volume-average Ui (a$. 

A s s u m p t i o n 2. The asymptotic behavior of functions Wi as b + 0 is 
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completely determined by prescribing uf (~6) and is independent of the geometry of 
region IJ and of the nature of the boundary conditions on dv. (We keep in mind 
the asymptotic behavior inside region V without taking the boundary effects into 
account ). 

For a wide ciass of problems of type 1 these assumptions can be proved by using 
the results in [2 - 123. Before we present the method for constructing the solution we 
describe the results. 

3, Asymptotics of the solution and averaged equations. 
The first terms of the ~ymptoti~s of the solution of Problem 1 as b -+ 0 are 

wi 7 vi (4 -I- tit (E, 4 (3.1) 

Here vi (~1 is a macrofunction, E is a vector with components Ek, Ek=xklb. The 
symbol F signifies that the terms of an order of smallness higher in comparison with 
that of the ones written out have been omitted. The functions $i are periodic in E” 
with period 1. It is convenient to introduce a standard elementary cell -a region B 
of changing variables $” in the limits - ‘fs Q E” < + l/s and to assume that 

gk E B. In the elementary cell the region A with boundary dA corresponds to 
regions A, . 

Both terms of asymptotic expansion (3.1) are essential for the computation of 
the stresses, since the derivatives of the displacements wi in the first approximation 
are given by the formula 

aw. &?. 
1~I - 

i- @+ 
&2 - 8xX a<* 

Later on. derivatives with respect to 
&#i/aE’ E $Jtitk* 

EL are denoted by a vertical bar in the indices: 
The averaged equations serve to determine the average displacements 

ui and have the form 
a a’ 0 in V --= 

&Gk aviz k 
, vi = hi on r3V (3.2) 

Here u is a quadratic form in Vi,kt being the minimal value of a functional 

n 

The minimum in (3.3) is sought over all periodic functions $i satisfying the incom- 
pressibility condition 

d$MEi = 0 (3.4) 

The quantities v(i, 5) are assumed to be constants. The minimizing functions $i in 
the variational problem (3.3) depends linearly on UC;, j) and, through ~(1, j) , de- 
pends on I. These functions appear in expansion (3.1). The averaged equations 
(3.2) are completely defined after the problem is solved on cell (3.3 ) and the quadratic 
form U is computed. To solve the problem on the cell we can use the methods de- 

veloped in [17, 181. 
The averaged equations have the form of equilibrium equations of a homogen- 

eous elastic body with elastic energy density u and with st.rw t-or ~~j=~~~~~~,~.~e 
note that because of the presence of cavitiies the property of incompressibility of the el- 
astic body vanishes and from the macroscopic point of view the elastic body is compressible. 
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In the consideration of Problem 2 for simplicity we assume that wi = 0 (1) 
as h 3 0. Then the second summand in boundary condition (1.5 ) is considerably 
less than the first and does not enter into the principal approximation. The first terms 
of the asymptotic expansion in Problem 2 are 

wi = vi tx) i- Cult Cx) - uk CT.)) (Pi’ (8 + Wi (51 x) 
(3.5 1 

where ZJ~ is a macrofunction and ([r are periodic functions of 5, which satisfy 
the conditions 

Here ( . > is the integral with respect to c over region B - A, referred to 1 - C. 
The last term in (3.5) makes a small contribution to the velocity when 
to the stress when uk - uk + 0 . 

The averaged equations serve to determine the average velocity 

have the form 1nn 01 81) 
-I----- --= 
2 ol’i dr” 2 01,. 7. k 

- (1 - c) 3 in I7 

-$ ((1 - c) 2 + CUT) = 0 in 1: 

/‘i -. Ai on c)C’ 

The dissipation L) is the sum of quadratic forms D, and Dz and of 

form Dlz: D -= D, + D12 + D,; D, is a quadratic form in Ui - 

quadratic form in the components of the deformation velocity vector eij 

ui # 0 and 

I?~ (2) and 

(3.7 ) 

(3.8) 

(3.9 ) 

the bilinear 

Vi, Dais a 
-= D(i, j), of 

the relative angular velocity vector Sii = wi - l/a (rot v)~ and of the relative vel- 
ocity gradient Aij = Ui,j - I.:i,j, and D12 contains the cross terms between ZL~ - 

ui and eij, Qi, Aij. Quadratic form D, is the minimal value of a functional 

TL = (uk - v,)$ 
The minimum in (3.10) is sought over all periodic functions (pik satisfying conditions 

(3.6). The vector zck -- vlc in (3.10 ) is assumed to be constant. Quadratic form 

D, is the minimal value of a functional 

Dz = inf 2p 1 +(i~&(~lj)d~~ (3.11) 
B-A 

The minimum in (3. 11) is sought over all functions 9i satisfying the constraints 

($i) -= 0, $i 13~ = eijkdEk (3.12 1 
a@laEi -; 0, [qils == ZI~,~ + fiks~p (E) 

Here [$iI,< is the difference in the values of function I$~ at the faces ES := + l/a 
and p = - r/z. The quantities ni,s and .!& are assumed to be constant on the 

cell: in (3.12) (pik is the minimizing function of variational problem (3. 10). The 
bilinear form Or2 is determined from the solutions of the variational problems (3.10 ) 
and (3.11) by the relation 



On averaging of periodic systems 1015 

D 12 = 4pb-1 s cp(i fj)qP 12 d3E 
R-A 

(3. I3 ) 

These same solutions occur in expansion (3.5 ). 
The averaged equations (3,7 ) are completely determined after the solving of 

the problems on the cells and the computing of D,, L), and D,, . The averaged 
equations contain four unknown functions: the three velocity components Vi and the 
pressure p. From (3, lo), (3.11) and (3.13) it follows that the coefficients of forms 

B,, Dr2 and & are of order b-“, b--I and 1 , respectively, Therefore, D,$ 
and Dz can be discarded in the first approximation. Equations (3.7 > take the form of 

Darcy equations 

Dii (vj - LL~) = - (1 - c) 3 (3.14) 

From the three boundary conditions in(3.9 ) we can retain only one for Eq. (3.14 ),for example, 

(Vi - hi) vi = cl (3.15 ) 

For ui = 0 the boundary-value problem (3.14), (3.8), (3.15) is the classical 
problem on the filtering of a liquid through a porous medium. The retaining in Eq. (3. 

‘7 > of terms connected with forms D,, and Ds enables us to seek a solution satisfying 

all three boundary conditions in (3.9 ). At a distance from boundary dV this solution 

will coincide with the solution of the Darcy equations, while close to the boundary it 

is of the nature of a boundary layer. 
We pass on to presenting the method for cons~cting the solution’s asymptotics 

and the averaged equations. 

4. An auxiliary problem. The main idea in the construction of the 
averaged equations is the following. In the variational Problems 1 and 2 we impose 

kinematic constraints: the volume-average of functions Wi (5) take specified values 

*i Cx)* We minimize functional E under this additional constraint. The minimal 

value E of functional E is a functional of ZJ~ (z). To find Ui (x) we obviously 

need to minimize functional E over Vi l According to Assumption 2, for the 

actual computation of E we can remove the boundary of region V to infinity and 

consider the original problems in the region R - ZA, (all regions A, of the in- 
finite periodic lattice enter into the sum ). By hypothesis, in R we are given the 
smooth macrofunctions ui (t), ui (z) and ai (x) . We assume that they have a 

finite spectrum (a finite Fourier transform ) . 
Problem 1 reduces to the following auxiliary problem: find the minimum of the 

functional 

ER = 2ct S Eijeij d3~ (4.11 
R---CA, 

under the constraint (1.2) and the additional constraint 

vi(n) = f 1 wi asx, Ui (n) = Ui (5) )2=567L 

%---A, 
(4.2 ) 

The auxiliary problem corresponding to Problem 2 consists in the minimization of 

functional (4.1 )under constraints (4.2 1, (I. 2 1 and (1.5 1. 
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Here ZL~ (TZ) = Ui (z) and Oi (n) = oi (5) when z = bn. The finiteness of the 

spectra Of Vi (z), Ui (X) and Wi (z) ensures a sufficiently rapid damping of the 
solution so that all the integrals over R converge . 

We transform formulas (4. l), (4.2) , (1.2) and (1.5 ) to a more convenient 
form by using the idea of a quasicontinuum [1] 

5. Quasicontinuum. With each function G (nk) of integer argumentsn*, 
defined for allgtk, we can associate a function G (x*) definedin thewholespace R by 
the rule 

G (s*) = 2 G (n*) 8 (z” - bn”) (5.1) 

8(x*) = ~~~in~~)~~~~in~~)(~~in~~ 

This correspondence possesses the following properties : 

G (5’) ~&-b,* = G (nk) 
b3 2 G1 (n*) Gs (n*) = 1 G, (x”) Gs (z*) d3x 

n R 

(5.2) 

(5.3) 

The interpolating function G (x”) is “maximally smooth” in Z* relative to a lattice 
of step b , i.e., its spectrum is concentrated in a cube K with center at zero and 
with side 2 n/b, and, thus, only harmonics with a wavelength greater than b occur 
in the expansion of G (x”) into a Fourier integral. Conversely, with each function 

G (zk) with a spectrum concentrated in K we can associate a function G (n*) by 
formula (5.2) ; relations (5.1) and (5.3) hold here. The replacement of functions of a 
discrete argument by functions (5.1) is said to be the introduction of a quasicontinuum. 

The finiteness of the spectra of the macrofunctions ZJ~ (z), Ui (5) and Wi (z) 
introduced in Sect. 4 ensures their connection with the functions vi (n), ui (n) and 

oi (n) in constraints (1.5) and (4.2) by formulas (5. l), since for sufficiently small 
b any finite spectrum falls into K. 

6. Reformulation of the auxiliary problem. The functionswi (z) 
defined in R - ZA, can be considered as a function of two variables: 101 = Wi 

(E*, n*), where Ek are cell coordinates and n* are the components of the int - 

eger-valued vector specifying the cell’s number. Formulas (4.11, (4.21, (1.2) and 
(1.5) are rewritten in terms of functions wi (ik, n*) as 

1 
Vl@) = l-_c s 

wi (El n) d3E 
B-A 

hi (5, n) 
@ = 0 inB-A 

(6.1) 

wi (5, n) = ui (n) + eijkm’ (n) bE*, E E 8A 
In addition to (6.1) we need to take into consideration that functions Wi arecontin- 
uous on the cell faces. This condition can be written in terms of wi (E, ?z) as follows : 
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wi (E”< n”) /<ET,+ = Wi (EL7 n” + 6.~~) )CET,- (6.2) 

Here rs- is the face of cell B with the equation E” = _ r/a and r8+ is the 

opposite face. 
We span the quasicontinuum, i. e., the functions ~2 (E, x) , by the functions 

Wi (E7 n). By virtue of property (5.3 ) , the functional takes the form 

ER = S @Dd3~, CP = 2pb-2 S W(ilj) (E, X) Wci’j) (E, X) d3E (6.3) 

R B-A 

We span the quasicontinuum also by the functions vi (IZ), ui (nj andwi (n).We re- 
write constraint (6.1) in the form 

vi (x) = & \ wi (ET x, d3E ZE Cwi (ET x)> 
(6.4) 

B-A 

awi (4*4 

ap 
=O, EEB-A, XER (6.5) 

Wi (ET X) = ZL~ (x) + beijkO’ (x) EL, E E 8Ay J: E R (6.6 I 

As is easy to verify, equality (6.2) can be transformed to 

wi (E”, zk) Ic~r~+ = wi (%“, xk + MP) IE=r,- (6.7) 

In the auxiliary Problem 1 we need to seek the minimum of functional (6.3 ) 
over functions Wi (E, x) with a spectrum finite in z under constraints (6.4 ) , (6.5 ) 
and (6.7 ) ; in the auxiliary Problem 2, the minimum of (6.3 ) under contraints (6.4) - 

(6.7) 
If we put aside the fact that functions wi have spectra finite in x and are 

subject to constraints (6. ‘7 ), then functional (6.3 ) has the form of the energy functional 

of Cosserat’s generalized continuum : there exists a three-dimensional continuum R, 
each point of which is provided with its own three-dimensional continuum, viz., the 
cell B - A. Constraint (6.7 ) connects the cells into a single entity. 

7. Problem 1. Functions ui (x) changes little at distances of the order of 
b ; therefore, the solution of the problem on the minimum of functional (6.3 ) under 

constraints (6.4 ) , (6.5 ) and (6.7 ) is naturally sought among the functions wi (E7 x> 

changing little in x at distance of the order of b. In this regard we can replace Wi 

(EL, xk + bask) in (6.7) by wi (EL, x”) and (6.7) turns into the condition for the 
periodicity of Wi (E”, x”) with respect to Ek 

lwils Z wi (E, 5) (cEr,+ - Wi (& X) jE,Er,- = 0 (7.1) 

The use of the approximate equality (7.1) instead of the exact (6.7 ) essentially sim - 
plifies the investigation, since theproblemson the minimum of functional @ aresep- 
arate for different X and the possibility appears of minimizirig functional (6.3 ) 

“point -by -point * by seeking the minimum of @ for each 5. The minimizing 

function of functional @ under constraints (6.4). (6.5) and ( 7.1) obviously has the 
form Wi (E, x) = Vi (x)., Since ui (x) is not determined at the first step, it is net - 

essary to construct the next approximation. We assume Wi (E, x)= Ui (X)+ Wi’[E, x). 
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Substitution into (6.7) yields [wils = hi,*. In this connection it is natural to set 

U’i (5, x) = ti’i (IL.1 + Enl,i (E, a$ (7.2) 

where the functions $i (g, x> satisfy the condition 

(7.3 f 

The substation of (7.2) into (6.3) leads to a problem on the m~imum of 
functional 

@ = 21-1 1 *‘fiy)Q(Wd~~ (7.4 1 
B -:_4 

over all ‘$i satisfying condition (7-3) and the incompre&biWy condition following 
from (6.5): ?i)ii” = 0. After the change of variables & -+ 9i + fs~~,~ theprob- 
Iem on the minimum of functional (7.4) turns into a problem on the minimum of func- 
tional(3.3 ) . 

The minimal value u of the functional 
U =; i/s EiiklVi jVk 1. In the first approximation, 

functional ER in (6: 3 ) we can write 

En= r U&C 
ii 

@ is a quadratic form in L’;,s : 
for the minimal value En of the 

It is obvious that the substitution of (7.2) into (1,6 ) yields, to within small quantities 
of higher order in b L 

E = j, UcP,c (7.5) 

and the equations for determining V: (s) are the Euler equations of functional (7.5 ). 

8, Problem 2. As in Problem 1 we seek the solution among the unctions 
Wi (g, X$ changing little in z at distances of the order of b 7 and, in this con- 

nection we replace constraints (6. ‘7 ) by the approximate equalities (7.1) . Once again 
we can solve the problem on the minimum of functional (6.3 > point-by-point, seeking 
for each x the minimum of functional Ci, under constraints (7.1) and (6.4) -(& 6). 

The essential difference from Problem 1 is that the minimizing functions Wi* depend 
on E even at the first step and the minimal value of functional @ is nonzero. The 

rni~rn~z~ng functions Wi * can by virtue of the problem’s linearity be represented in the 

For brevity, together with CpiL we shall operate with the functions vi = (u& - 
u,) cprh’, keeping in mind that the subsequent substitution of the relation for (Pi and 

the use of the arbitrariness of uir - vlr yield the equations for (Pi”. The constraints 

on wi take the form 
a~,i/d% r= 0, (rpi) = 0, foil, I- 0, (pi JaA = Ui - Ui GL2) 

From the condition of the minimum of functional CD we find the equations for (pi 

i3~13e _t 2 PAqi + hi =I 0, !.- p&ii + 2 ~~~~,~~~j z 0 f&3 1 - 

In (8.3 ) there is no summation on j ; p and hi are the Lagrange multipliers for 

the first two constraints in (8.2). * 
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The minimal value D, of functional @ is a quadratic form in the relative velocity 

D, = Di' (ui - vi) (ui - vi) (8.4) 

Let us consider the following approximation with respect to b. Substitution of 
(8.1) into (6.7) shows that the discrepancy is of order b. Therefore, we seek Wi in 
the form 

zL’j_ =3 Wi* + btjli (8.5) 

where qi (!,, X> changes little in 2 at distances of the order of b. Substitution of 
(8.5 1 in (6.7 ) with the use of (8.1) and of the periodicity condition for vi” yields 

I%],Y = ni.s + ~AQ, A,, = uk.s - uk,s (8.6) 

The functions $i satisfy, besides (8.6)) the constraints 

&@Vi,~ = 0, I& la.4 = eijh_ CJ (X) E” (8.7) 

From (8.6) and (8.7 ) it follows that the quantities vi,s cannot be arbitrary _ As a 
matter of fact, by integrating the first equality in (8.7 ) over B - A, we obtain 

(8.8 1 

The last integral in (8.8 Iequals zero. Using (8.61, for the summa~on in (8.8 > we 
can write 

i 1 1% dZE = jr J+ (us, s -I- QP,“) @g = (8.91 
s-11‘ + 

The lastterm in (8.9) equals zero (to be convinced of this itissufficienttopasstoanin- 
tegration over B - A and to use equality (8.2) ). By virtue of the boundary con - 

dition tpi k = 6$” on A4 the integral in the second term equals - cab. There - 

fore, as the condition for the solvability of the equations for $i we obtain from(8.8) 

and (8.9 ) the equation of continuity for the continuous and discrete phases 

a/@ ((1 - c) ui + cui) = 0 (8.10 1 

The substi.tution of (8.5) into functional @ leads to the following expression : 

@ = Dr + II12 + 2p S ~~~~j~~‘~~j’~3~ 
B-A 

,D12 = 4pb-l j A Wlj~uPcL’~W 

With the use of an integration by parts and ot Eqs, (8.3) I (8.6 > and (8.7 ) we 

can convince ourselves that D,a depends only on vi and on the parameters occur- 

ring in the boundary conditions for $r. Therefore, the minimization of @ over 9s 



1020 V. L. Berdichevskii 

is reduced to the second variational problem on a cell, described in Sect. 3. 
The minimal value D of functional Q is the sum D = D, + Dlz + D, 

and the averaged equations are the Euler equations of the functional 

E = s Dd3x 
V 

under constraint (8.10) and condition ui = hi on W. 

8. on the valuu of the ooefficientr ln Problem 2 in the WC of tmall concen- 
trations, As c - 0, D, passes into dissipation (referred to the cell volume ) which is 
caused by the translational motion of body A in an unbounded viscous liquid. In part- 
icular, for a sphere of radius a [19] 

D, = 6 np~b-~ (u - u) 2 

If the body has cubic symmetry, it follows from the properties of tensor-valued functions 
that D12 = 0. 

Let US compute D1 when Aij = 0. We represent $i as the sum $i = 

$i’ + Ui,j$j. Then Ds is the minimal of a functional 

D2 = inf 2p \ (&i/j) + eii) ($Nj) + eij) d3E (9.1) 
B-A 

The minimum of functional (9.1) is taken over all functions $i’ satisfying, according 
to (8.6) and (8.7 ), the conditions 

&jP/aEi = 0, [$)i’ls = 0, $)i' IBA = - et# + eij&PEk (9.2) 

The first equality in (9.2) has been obtained with due regard to the fact that by virtue 

of (8.10) I$ = 0 when Aij = 0 . Removing the parentheses in (9.1) we have 

Da = inf [2p (1 - c) eijefj + 2peij2 1 $‘(Wd3~ + (9.3) 
R-A 

2p 1 g&~~'(i~jM3~] 

B-A 

The second summand in (9.3 ) , after an integration by parts using (9.2 ) , equals 
4 pceijei’. Therefore, 

Dz = 2 p (1 + C) eijeij + 0.2’ (9.4) 

The quantity L)a’ is the minimal value of the last summand in (9.3 ) over all functions 

$i’ satisfying constraints (9.2). Formula (9.4) is valid for body A of arbitrary 
form for any value of concentration c . As c -+ 0 , Dz’ passes into dissipation (ref - 
erred to the cell’s volume ) which is caused in the liquid’s infinite volume by the homo- 
geneous deformation of body A with deformation velocity tensor eiJ and by the rot- 

ation of A with angular velocity Qi. In the case of a sphere we can calculate that 
Da = 3 PC (eijeiJ + 2 QisZ*). Thus 

Ds = 2 p (1 + ‘1s C) efjeij + b @2iQi (9.5) 
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Expression (9.5) shows that the correction to the shear viscosity is indeed given by the 
Einstein formula. 

The well-known derivations of the Einstein correction do not differ in rigor and 

have repeatedly evoked discussions. In addition, from (9.5) we see that the dissipation 
contains the curl of the velocity. As a result of this the viscous stress tension r/z aD /8vi,j 

which occurs in the averaged equations (3.7 ) is asymmetric. Mutually exclusive asser- 
tions also have been made regarding the symmetry of the stress tensor. We remark that 
because of the smallness of tile rotational viscosity coefficient the situations in which the 
skew-symmetric part of the stresses make an essential con~ibution turn out to be rather 

special. According to (9.5) the coefficients of the averaged equations, in the limit as 

c-b * are independent of the lattice parameters. In this is manifested a more gen- 
eral property of the systems being examined: for small concentrations the interactions 
of the particles can be neglected while the efficiency coefficients depend only on the 

form of the particles but not on their disposition. The proof of this statement has been 

given in [ZO ] 

10, On generalizations. What has been presented can be immediately 
extended to any linear equations which are the Euler equations of a convex quadratic 
functional. The generalization to Euler equations of a convex nonquadratic functional 

when Dirichlet-type conditions are set on the cavities, is carried out by averaging the 
original functional on fields of form (3.5), analogously to the way this is done in [5] 

for the Neumann- type conditions, 

Generally speaking, Assumptions 1 and 2 in Sect. 2 are incorrect in dynamic 
problems. Therefore, here we merely describe briefly a method for co~tm~ting certain 
particular solutions which in a specific sense change little at distances of the order of b. 

We restrict ourselves to problems on the oscillations of an infinite elastic body contain- 
ing periodically situated traction-free cavities, The exact solutions are the extremals of 

the functional 
tz 

1 = 5 [ 1 

t, R--CA, 
(h (8i’)’ + 2~LsijEfJ - puti, +uf t) d%] dt (10.1) 

After passing to the quasicontinuum, functional (10.1) takes the form 

fs 
I= * 

ss 
awx.it 

tr R 

m 2) 

CD = 
S 

B-A 

Assuming that the functions wi change slowly in x at distance b, we pass 
from the exact joining conditions (6.7 ) to the approximate (7.1). Then thesearch for the 
extremals of functional I is reduced to the search for the extremals of functional Q. 

The latter have the form 
Wk = Fk @ei”’ 

Here FI, (5) and o are the eigenfunctions and eigenvalues of the problem on the na- 
tural oscillations of cell with periodic boundary conditions 
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TIZJ ;- o”pi -_ 0, aii a~~~h-6 II +- 2~ I”(i,,i), IFi], == 0, [oijlsvj = 0 

Accountable number of natural oscillations exists. To each of them corresponds its own 
slowly-varying solution. Let us first consider the natural oscillations corresponding to 
zero natural frequency 0: the eigenfunctions Fi are independent of E ; therefore, 

zc’i -- uf (.r). We see that we can adopt a more general dependency 

(i’i ’ Iii (.1., 1) (10.3) 

It is sufficient only that 3ur :’ at - T/G adi / as. Similar oscillations can be called 
slow or quasistatic. The substitution of (10.3 ) into the exact joining conditions (6.7 ) 
shows that 

TOM = /~i (.I’, t) + 6Qi (57 T, I), ]$i]s = ZQ,~ 

For the slow oscillations we can omit the dynamic terms in the equations for $i . The 

averaged equations will differ from the averaged static equations by the summand 
(0) i?rci / 812. 

Let us consider the natural oscillations with nonzero frequency o. The eigen- 
functions are determined to within a multiplier IL not depending on E : WC = u (x)Flc 

(Q Pt. We can adopt a more general formula for the first term of the asymptotics : 
U’k= u (x, t) *Fii (8). Here it is assumed that OIL i at - ou. Any nonzero natural 

frequency o is of the order b-’ 1/P I 0. Therefore, the correponding “macro - 
oscillations ” defined by functions u (.r., t) are “rapid” , The next term of the asymp- 
totics and the averaged equations are found by the same scheme as in the static case. 
The averaged equations have the form oftheKlein -GordonequationsAAn - Bu = Utt. 
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